Using Airborne Gamma-Ray Spectrometry Exploration to Accelerate Geological Mapping in Greenfield Areas of Northern Canada

Volkan Tuncer, M.Sc., P.Geoph.
TerraNotes Ltd, Edmonton AB
Volkan.terranotes@gmail.com

Lei Sha, M.Sc., P. Geoph.
TerraNotes Ltd. Edmonton AB
lei.terranotes@gmail.com

Fatih Doğan, PhD. Physics
TerraNotes Ltd. Edmonton AB
fatih.terranotes@gmail.com

Julien Lambert, B.A.; GDM
Terranotes Ltd. Edmonton AB
terranotes@gmail.com

Summary

This study shows that ternary composite imaging from airborne gamma-ray spectrometry survey data can be used to prepare lithology maps with very little geological information.

Introduction

Airborne Gamma-Ray Spectrometry (AGRS) exploration measures the equivalent Uranium (eU), equivalent Thorium (eTh) and Potassium (K) content of the near surface. These are very common radioelements found in varying amounts in different type of rocks.

It has been shown that the composite images of the three AGRS radioelements are comparable to geological lithology maps in several geographical districts.

Theory/Method

In this study we researched and developed an approach to accelerate geological mapping in Greenfield Areas of Northern Canada using airborne AGRS. This approach consists of the combination of the following techniques:

1) an automatic technique without any priory information, and,
2) a hierarchical classification technique with priory information.

The first technique combines the three radioelements (eU, eTh, and K) in a statistical manner and defines the relative abundances of those radioelements at each data location. The results of this technique are illustrated using composite ternary imaging procedures. We were able to distinguish felsic Quartz Feldspar Porphyry (QFP) areas from mafic areas.
The second technique’s goal was to complement the visual interpretation of ternary maps with more quantitative measurements. We developed a quantitative method to establish the relationship between the rock samples and their radioactivity content acquired from the airborne system. Modeling was used to quantify the radiometry signatures and rock samples were used to classify the radiometry data.

Conclusion

This approach allowed us to extract a maximum of relevant information from the AGRS data and extend the primary geology maps beyond areas where the geology is not known.

Acknowledgements
TerraNotes and I would like to acknowledge the research and development contribution for this study from the following agencies:

1. National Research Council Canada (IRAP)
2. Alberta Ingenuity Fund (now Alberta Innovates Technology Futures)

And finally, we would like to thank to GeoScience 2010 for accepting our abstract and giving us the opportunity to share our study’s findings with you.

References

