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Abstract 

There has been a lot of interest to incorporate non-stationarity into geostatistical modeling. While 
first order non-stationarity can be easily considered using data transformations or considering a 
locally varying mean, the association of second order stationarity is less straightforward and few 
practical techniques exist. Current methodologies such as MPS with local pattern orientation, 
local kriging search orientation and kriging with LVA all deal with a varying anisotropy field. 
However, these techniques can be employed provided a map of local orientations and magnitude 
of anisotropy are exhaustively defined, called an LVA field map. The focus of this paper is to 
highlight a host of methodologies that can generate the required LVA map from various data 
sources.  

 

 

Introduction 

Traditional geostatistical techniques rely on the assumption of stationary anisotropy.  This assumption 
is often relaxed and anisotropy is defined locally.  Algorithms use this local definition of stationarity 
when calculating estimates or simulations.  This work is concerned with obtaining this locally varying 
anisotropy (LVA) field. Non-stationary conditions in geostatistics can be easily incorporated though an 
LVA field that completely describes the magnitude and direction of anisotropy. Several techniques are 
explored for LVA field generation from mapped or exhaustive data, axial data in the form of point 
orientation measurements and centerlines of complex objects from geological modeling. Orientation is 
obtained from exhaustive data by calculating the orientation of local windows; a technique is presented 
to optimize the window definition to obtain better LVA definition.  Point data are uniquely treated as they 
represent axial data, i.e. the angle is equivalent to 180°+angle; a specialized kriging program is 
provided to deal with this class of data.  Finally, orientation is obtained from geological objects by 
thinning the object and calculating the centerline.  This centerline is used as the local orientation. 

Several reasonable methodologies are available to incorporate the assumption of second order non 
stationarity into geostatistical modeling, but require a well-defined map of deposit orientations and 
magnitude. Kriging with LVA (Boisvert and Deutsch, 2011) uses the shortest nonlinear paths to 
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incorporate the locally varying anisotropy; local anisotropy kriging (Stroet and Snepvangers, 2005) 
calculates local orientation automatically; and local variogram reorientations (Deutsch and Lewis, 1992; 
Xu, 1996) are some of the methods that avail the use of an LVA map.  

In most cases the conditioning data is not dense enough to show non-stationary features. Evaluation of 
exhaustive secondary data and geologic interpretation may indicate LVA features that are not 
represented by conditioning data.  An LVA field must be constructed that honors these underlying non-
stationary features in order to generate numerical property models with the correct anisotropy.   

 

1. LVA from Point Source Data  

Direct angle measurements are available from outcrops, borehole cameras and full-bore formation 
micro imagers (FMI).  Data on formation dip can be directly measured from dipmeter. Inference of LVA 
from such point data, however, is not straightforward and requires preprocessing since data is axial in 
nature.  

In standard geostatistical algorithms anisotropy is assumed axial (or undirected), strike (θ) is identical 
to θ+180°. In dealing with directional data in two dimensions a standard procedure is to decompose the 
angles into circular coordinate vectors (C=cosθ and S=sinθ) pertaining to angles that wrap on the unit 
circle, i.e. 0° is the same as 360°. This convention cannot be applied directly as axial data is 
0≤θ≤180°.Mardia and Jupp (2000) suggest doubling the data such that observations are 0≤θ≤360° and 
through correct standardization data wraps at 2π. Prior to doubling, data are restricted to [0, π].  For 
example a value of 270° is recoded to 90°, then doubled to be 180°. Standard circular transformations 
can then be applied to the doubled data (Figure 1).  

 
Figure 1 : Synthetic dipmeter data (orientations) and associated decompositions. (Boisvert,2010) 

Once the observations are in circular components estimation (or simulation) is done using kriging (or 
SGS). It is necessary to reproduce the correct correlation between vector components C and S, and a 
strong relationship may warrant cokriging or cosimulation (Boisvert, 2010).  

Three dimensional data is more complex as angle ‘doubling’ is not sufficient to consider the axial nature 
of data defined by a strike and dip. The method is outlined in Mardia and Jupp (2000), the need for 
such processing can be motivated similar to the limitations mentioned in the 2D case. Each input is 
defined by strike (θ) and dip (Φ) and is decomposed into spherical polar coordinates. The direction X is 
decomposed as: 

    X (z,x,y) = (cosθ, sinθcosΦ, sinθsinΦ) 

Now using kriging to interpolate an exhaustive LVA field would give erroneous results as points with 
strike 45° and 225° are recognized opposite whereas they lie in the same axis and are continuous. 
There is a need to identify which orientations (positive or negative axis) in the sampled points would 
give the best estimate at any unknown location. Descriptive statistics such as variance of a set of 
angles provides a good measure in choosing axial orientations. For any number of sampled points our 
aim is to (i) align data on the same axis or along axes with small deviation and (ii) provide continuity of 
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features among the known points and estimate. This by definition is given by the minimum variance of 
a cluster of axial data.  

Consider three sample points being used to estimate at an unknown location (Figure 2). The proposed 
technique is to determine which axial orientation would be consistent for all three locations. There are a 
total of 3 different situations (Figure 2) and the variance of the angle data can be used to determine 
which of the three orientations should be averaged (equation 2). As indicated on Figure 2, the 
combination where location u3 is ‘flipped’ (consider the opposite axis) has the minimum variance (Table 
1).  It is important to distinguish this angle variance from the typical kriging variance used in estimation.  
This angle variance is only used to determine which orientation results in the most consistent estimate 
for a given location.  For any number of conditioning data, the aim is to determine the combination of 
data that results in the minimum variance of the angles.  Because estimation proceeds sequentially, 
from location to location the input data is not significantly different when reasonable search ranges are 
selected. This will allow for the quick calculation of appropriate sample orientations if the orientations 
used in the previously estimated location are known.   

Consider data on S3, x1…xn the sample mean is : 
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The spherical variance is computed for all combinations of orientations of the surrounding conditioning 
data found within the estimation search. As an illustration, assume we are using 3 nearby samples for 
estimation (Figure 2) denote the input axial orientation as 0 and the ‘flipped’ or opposite orientation 1. 
The combinations that need to be considered are:  

 

Table 1 : Angle variance for all combinations of input data 

Cleary the sample at location u3 should be rotated and point in a similar direction as the other data, this 
is reflected in the variance of the angles.  Significantly more combinations are required for considering 
a larger number of conditioning data.  The combination with the minimum variance is selected and 
traditional estimation of the components of x is implemented. The methodology is implemented on a 
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synthetic 3D axial data (Figure 3) and component-wise decompositions for the domain of interest are 
shown (Figure 4).  

 

 

 
Figure 2 : Estimating at an unknown location (?) with three conditioning data located at u1,u2 and u3. 

 

 

 

 
Figure 3 : The shaded represent the shape of the underlying syncline model; at discrete locations the orientations are taken as 

synthetic angle data and are represented by the arrows. 
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Figure 4 : Component-wise estimation 

 

 

2. Generating LVA Fields from Centerlines 

Skeletons and centerlines are often used to represent objects as they provide a simplified form of 2D 
and 3D bodies. In this case the geological interpretation/model will be used as the object that we would 
like to represent.  The goal is to reduce the object complexity so that orientation can be easily 
determined from the skeleton.  Topological features and size characteristics are preserved after the 
transformation (Telea and Wijk, 2002). Sethian’s fast marching method (FMM) and its deviant 
multistencil form presented in Hassouna and Farag (2007) is used to calculate the centerline of a 3D 
representative geological body. Skeletonization of 3D objects is theoretically meant for compact 
representation of discrete objects, aiding in visualization, feature tracking and extraction etc.  

The skeleton of an object can have several definitions. Blum (1967) defined a skeleton as the locus of 
the centers of maximal disks contained in the original object (Wang and Basu, 2004). For the 
calculation of a skeleton from a geological body, the skeleton should have the following properties (1) is 
a subset of the original dataset (2) has centered geometry within the bounds of the dataset (3) is largely 
connected and (4) is represented by a minimum number of voxels of the width of one cell (pixel). 

 

Multistencils Fast Marching Method 

The Fast Marching Method (FMM) is a technique for tracking a monotonically advancing closed surface 
proposed by Sethian (1996). The important feature for FMM is that skeleton points are created as the 
compact fronts evolve and collapse onto each other. Closed surface or interface propagation is 
identified by its motion; two types of motion are distinguished. A uniformly expanding or contracting, 
normal to itself, interface can be expressed as the boundary value formulation, whereas an interface 
advancing erratically is an initial value problem (Telea and Wijk ,2002).  In higher dimensions the 
equation of motion of a propagating front is  
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The FMM, although highly consistent and accurate in solving the Eikonal equation (3), suffer from 
numerical errors along diagonal neighborhoods. Hassouna and Farag (2007) incorporate exhaustive 
diagonal information in FMM by using several stencils centered at each grid point covering all possible 
neighbours. The method now solves the Eikonal equations at several stencils and picks the solutions 
satisfying the FMM causality condition, i.e. the arrival time T(x) depends on immediate neighbors that 
have smaller values.   

Note that the skeleton is a fairly reasonable representation of the major features of the body (Figure 5); 
however, in very thick areas the skeleton often invents features that are otherwise absent (i.e. North-
West portion of Figure 5) and should be checked manually before using the polylines to interpret an 
LVA field.  In Figure 6 these polylines are used to generate the LVA field by kriging the orientations of 
the polylines using the methodology presented for generating LVA fields from axial 3D data in Section 
1. 

 
Figure 5 : Centerline created using multistencils FMM 

 
Figure 6 : Plan view of LVA map populated using standard interpolation techniques 
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 3. Adaptive window for Local Orientation Extraction from exhaustive data 

When an exhaustive secondary variable is available or mapped with minimal uncertainty, such as 
geophysical survey or outcrops, they can be used to infer the LVA field of related variables that may not 
be as densely sampled but are strongly related to the secondary variable.  Data from remote sensing 
techniques provide exhaustive low-resolution information on secondary variables and often the 
continuity of related primary data is assumed to be similar. Two methodologies for generating 
orientation from exhaustive data are presented in Lillah and Boisvert (2012); the first obtained 
orientation through structure tensors and the second methodology (Feng, 2003), uses image and 
texture analysis techniques. Similar orientations can also be generated using moment of inertia tensor 
that is derived for the covariance map of the domain at each grid point (MHassanpour, 2007) The basis 
for these techniques are to calculate the local orientation of continuity based on a window around the 
location of interest (Figure 8).  The definition of the local window is critical and should be sized such 
that local features of interest are captured inside the window.  When the size of the local features varies 
in the domain, the window should be adapted to match the feature size. 

 

The goal is to determine the optimal search area that best defines local features. In this paper the term 
‘window’ or search neighbourhood is defined by an ellipsoid (an ellipse in 2D). One way to generate the 
LVA field in this adaptive window approach is to consider all possible combinations of the three 
parameters, major and minor axis of the ellipsoid search area and a rotation angle (Ɵ), defining the 
search for each grid location and choose the set with the maximum reliability. Reliability is a 
quantitative measure of confidence on the estimated orientations (Jeulin and Moreaud, 2008) 
calculated from the ratio:  

 

where, λi, i=1,2 are the eigenvalues of a 2D tensor matrix.  

The need for such an adaptive local neighborhood is motivated in the following on Figure 7. A synthetic 
outcrop image is considered that at once captures features of different scales. It is seen that selecting 
the proposed adaptive neighbourhood framework delineates the LVA of the large and smaller features 
fairly accurately than choosing either a large or small moving window for the search criteria. The key 
aspect to generate LVA field in this adaptive window approach is to go through all possible 
combinations of the three parameters (ranges in major, minor directions and rotation angles) for each 
grid point and choose the one from the best measure of reliability. The input ranges maybe large and is 
computationally heavy to calculate orientations for all the possible combinations of the desired 
parameters. So, a partial-optimization (skip some parameter combinations) process can be done that 
approximates the results very well (Figure 9). 

 The steps involved are: 

1. At the initial grid location calculate local orientation considering the exhaustive set of  parameter 

combinations 

2.  Select the combination that gives the highest reliability measure, and store the parameter values as 

the base case 

3. In the next pixel, calculate orientations only for the base case and parameter values that deviate only 

slightly from the base case. Update the base case values and proceed sequentially   
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Figure 7:  (a) and (b) show the LVA field generated using a large (20×20) and a smaller window. A more accurate LVA   representation is 
found using the adaptive scheme (c). 
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Figure 8: The idea of a moving window is illustrated here. The LVA field is generated using a square window of (10×10) pixels. Sizes of the 
windows at different locations appear as shaded squares on the image. (Boisvert,2010) 
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Figure 9: The partial optimization approach to finding the LVA map using structure tensors 

 

The LVA follows the underlying features quite closely. However, here the method is illustrated in a fairly 
small model. Considering all the combinations with three different parameters can be computationally 
infeasible for larger and more complex models. Additionally, in 3D there are six parameters to optimize.  
Instead the partial optimization scheme is implemented (Figure 7). In most cases the continuity of the 
formation varies smoothly in space and is similar for adjoining locations (cells).  As a result, performing 
the full optimization at the first point and using this optimized result as the starting point for the adjacent 
location reduces CPU time considerably with similar results (Figure 10). 

 

 

 
Figure 10: Delta plot of LVA field showing the difference between full and partial optimization. 
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Conclusions 

Generating LVA fields from several data sources are presented and they are fairly accurate 
representations of underlying deposit. Exhaustive data, such as outcrop images, information on 
secondary variables (seismic surveys), are best assessed with a moving window framework using any 
of the tensor based methodologies discussed. The difficulty in incorporating point axial data is 
examined and their implementation in both 2D and 3D show satisfactory results. If the case presented 
is based on geologic interpretation, skeletonization of complex formations would yield a compact shape 
representation before the locally varying anisotropy conditions are deduced. Therefore, the nature of 
the data is the dictating factor in selecting an LVA generation technique. 
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