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Summary 

Permeability is one of the most fundamental petrophysical parameters in petroleum engineering 
calculations. The Carman-Kozeny equation has been used to obtain permeability (k). This equation 
results from the mixture of Darcy’s and Poiseuille’s laws. While Darcy’s law macroscopically quantifies 
fluid flow, Poiseuille’s law describes the parabolic displacement of a viscous fluid in a straight-circular 
tube. This denotes a common scheme in hydraulics (like the boundary layer theory) that, for the sake of 
simplification, solves separately for inviscid (zero viscosity) and viscous effects. Yet, in some cases this 
is only a good approximation (White 2003). 

Darcy’s law, intended for hydraulic systems, has been catalogued as equivalent to Ohm's law, best 
suited for electric problems. Ohm's law has been proven insufficient in porous media, because it is 
correct only for the straight paths of the electric current, not for the meandering routes encountered in 
the rocks (Haro 2010). Thus, by similarity, Darcy’s law also requires modification to compensate for the 
tortuous paths. It should be derived by use of the streamlines that describe the hydraulic flow 
distribution within the porous network. This law should invoke a corner-angle solution of the Laplace 
differential equation, to include an exponent (A), associated with the corresponding cross section, that 
considers the velocity variations in direction caused by the hydraulic tortuosity of the rock (White 2003). 

The mathematical similarity between Darcy’s and Ohm's laws permits us to connect Carman-Kozeny’s 
and Archie-Haro’s (modified Archie’s equation, Haro 2010) equations, which are also mathematically 
analogous (Haro 2004, 2006). This means that resistivity log measurements can help us find the 
unknowns in Carman-Kozeny’s equation. However, the electric tortuosity exponent (m) differs from the 
hydraulic tortuosity exponent (A) because of fluid viscosity and the inertial forces created by the 
intricacy of the rock. Although a rough estimate might be (m + 2), hydraulic tortuosity is mainly 
uncertain because flow is not always laminar Darcy flow everywhere within the pores. In fact, hydraulic 
tortuosity is the main unknown to find k. 

This theory in conjunction with a database approach (lookup table) facilitates enhanced permeability 
modeling (Haro 2004, 2006). This method enables the creation of static and dynamic synthetic 
production logs, which can assist effectively in fluid allocation, production forecasting, history matching, 
and well completion (Haro 2012). These are critical variables to succeed in reservoir management. 

Introduction 

Innumerable methods have been created for permeability modeling. Nelson in 1994 did a 
comprehensive compilation of the methods available at the time. However, he was unable to explain 
the differences in the slope of the data in a log-log plot of permeability vs. porosity. Among the 
methods, he mentioned Amaefule’s, Winland’s, and Lucia’s. These are some of the most popular ones 
in the engineering and geoscientist communities that can be represented with two unknowns. While the 
first two methods use a fixed porosity exponent (around 3 and 2, respectively) for lack of enough 
equations, the third one employs a variable exponent (between 4 and 9) because it is based on two 
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equations. Civan (2002) proposed a new permeability method based on fractal analysis that also 
supports a variable exponent. This recommendation coincides with the analysis presented in this paper. 
Indeed, the various data slopes in log-log plots confirm that the exponent A (Eq. 1) should be variable. 

According to the literature, Carman-Kozeny’s equation was derived assuming straight, parallel, non-
communicating conduits (bundle of parallel capillary tubes), rather than true granular media with 
topology and tortuosity. For this reason, the porosity exponent in this equation is fixed and equal to 3. 
This is equivalent to m = 1 in Archie-Haro’s equation. Again, a porous medium requires a variable 
exponent to be theoretically sound, which is essential for improved permeability modeling. 

Theory and Method 

The Laplace differential equation in 2D adequately describes the streamlines and potentials when 
analyzing fluid mechanics of inviscid flow. Its corner angle solution contains an exponent that can be 
associated with the cross section of the hydraulic paths (areal porosity). Moreover, the exponent has a 
mathematical connection with the corner angle that delineates the meandering routes within the porous 
rock. For these reasons, the Carman-Kozeny equation must have a variable porosity exponent and 
direct geometric ties with the hydraulic trails, as expected. Although there are various forms of the 
Carman-Kozeny equation, they can be reduced to the following form (Haro 2004, 2006): 

 Blog([A Log(k) ...….………………………………………………………………………….………..….(1) 

where ϕ is porosity of the porous medium, and A and B are calibration parameters. The Archie-Haro 
equation reduces to the same mathematical form (Haro 2004, 2006). 

In generating a good permeability transform with cores and well logs, rank correlation is usually 
employed to find the proper well log parameters. This could be a potential problem if the correlation 
coefficients are low. In most cases, this is a time-consuming trial and error exercise. With the proposed 
method, irreducible water saturation (Swi), ϕ, and deep resistivity (Rt), which are integral parts of Archie-
Haro’s equation, are always used. Historically, these parameters have been reported to have the best 
correlations with permeability, so it makes a lot of sense to use them. Besides, these parameters 
should always be available for wells with sufficient data to generate a standard petrophysical analysis. 

The combination of the Archie-Haro and Carman-Kozeny equations enables us to use a rock type 
definition (Eq. 2) that is equal to Buckles’ when m = n (where n is the saturation exponent). This permits 
a direct connection with water cut, because coherent Buckles patterns should correspond to zero water 
production, according to the theory. In addition, Swi becomes a mathematical link with capillary 
pressure, absolute and relative permeability, and fractional flow, because Swi constitutes one of the 
endpoints and part of the locus of those equations. 

 
Figure 1: Cross sectional view of a pore: Irreducible water is occupying a space, crevices (green) and films 

(yellow), that otherwise should be available to non-wetting fluid flow. 
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A cross section of a pore is depicted in Fig. 1, where irreducible water is displayed attached to the pore 
walls (water-wet condition). The figure illustrates that the greater the Swi, the smaller the space for the 
hydrocarbons to pass through, therefore permeability to oil diminishes. This applies both to the pore 
throats and pore bodies. Accordingly, Swi has a good theoretical correlation with k. Furthermore, the 
larger the hydraulic paths are in the rock, the longer the time it will take for the fluids to travel across. 
So, topology and tortuosity have an impact on permeability magnitude, and they should be ingredients 
or controls of k. Thus, the following relationships (obtained from combining Archie-Haro’s and Carman-
Kozeny’s equations) apply (Haro 2006): 
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where a and b are the tortuosity factors (Haro, 2010), and S is the specific surface area, obtainable 
from various sources (Haro, 2006). Both equations are dimensionally homogeneous and should be 
resolved simultaneously. Eq. 2 is intended for rock typing, while Eq. 3 serves to find permeability. The 
right hand side of Eq. 2 depends only on log values, thus rock typing can be performed in cored and 
uncored sections/wells. Since Eq. 3 is parameterized using hydraulic tortuosity, this equation is geared 
towards fluid permeability, not to air permeability, which is generally measured during core analysis. 
Thus, the corresponding conversion factor is necessary. 

 
 
 

 

Figure 2: Comparison of a synthetic production log in a vertical well with zero water cut (continuous line) and an 
actual production log (dots). With good agreement, the method can be used confidently for production allocation. 
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The proposed permeability model complies with important characteristics, which are considered 
advantageous in the literature (Jensen 2000): 

 It is theory based. Besides, there is a physical reason for resistivity (measurement) and 
permeability (unknown) to be related. These items avoid “happenstance.”  

 The usage of microscopic relations for Darcy’s, Poiseuille’s and Archie’s equations, which honor 
respectively the internal distribution of flow, fluid laminae and electric currents travelling through 
the pore passages, makes them volumetrically compatible with permeability, which also depends 
on topology, tortuosity and the internal structure of the rock, as specified before.   

 A rock type definition that employs Swi and ϕ refers to sample volumes generally consistent with 

the geological scales. Therefore, it is possible to take advantage of the semi-repetitive nature of 
geological events that occur in similar rock units. However, some incompatibility persists in 
laminations or features below the resolution of the logging tools, which should be resolved before 
attempting permeability estimations. 

Example 

In the quest for permeability, lookup tables are used with the proposed method. This type of procedure 
is generally used in engineering (e.g., to match PVT data) when there is no evident correlation. Since 
Eqs. 2 and 3 have a good theoretical foundation, they overcome the limitations reported by Nelson 
(1994). This methodology can be compared with a cloud transform, fuzzy logic or conditional 
expectation. These techniques are widely used in reservoir characterization.  

The main advantage of a database approach (Delfiner 2007) is that the high values of permeability are 
honored and not replaced by lower values coming from a correlating line. This observation signifies that 
permeability multipliers are not needed to match production, whereas it is common to require multipliers 
of 5 or more to get a history match, especially in simulators (Haro 2012). The best way to show this 
type of agreement is by means of a synthetic production log (SPLT), as the one illustrated in Fig. 2. 
SPLTs are obtained using a radial flow equation in vertical wells and summing all the fluid contributions 
at every depth. Of course, this equation uses permeability. Therefore, the conformity between an SPLT 
and an actual production log means that permeability is correctly calculated and vertically distributed, 
and therefore it can be used for production allocation. In addition, good permeability values are a 
requisite to obtain accurate DSPLTs (dynamic synthetic production logs obtained over time), which 
shall permit history matching and reliable production forecasts in a well. This has already been 
demonstrated in a previous paper (Haro 2012).  

For reference, Amaefule et al. (1993) mention that they also used a database approach in the 
implementation of their FZI model (flow zone indicator) in uncored sections. 

Conclusions 

The Laplace differential equation and its corner angle solution justify the use of a variable exponent for 
the porosity term in the Carman-Kozeny equation. The exponent, which represents hydraulic tortuosity, 
has geometrical implications as well as viscosity compensation. 

Hydraulic tortuosity (A) is different from electrical tortuosity (m) due to the viscosity effects of the 
hydraulic flow. 

A database approach proves to be a superior technique compared to traditional ones (k-ϕ lines) to find 
permeability. However, a database approach must be solidly based on the theory. 
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