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Purpose 

The main purpose of this article is to provide geoscientists with one source which uncovers the 

connection between pre-stack seismic gathers and the petrophysical properties that cause 

amplitude versus offset (AVO) variations in them. There are many seismic AVO equations in the 

literature, all parameterized differently, e.g., Shuey (1985), Smith and Gidlow (1987), Verm and 

Hilterman (1994), and Gray et al (1999). This paper attempts to reconcile these 

parameterizations by presenting all of these existing equations using common parameters 

which are defined in Appendix A. Table 1 lists all the equations using the most commonly used 

parameters for each of the elastic constants. A second purpose is to fill in the gaps where 

interesting petrophysical parameters point to the possibility of equally interesting AVO equations 

that have not yet been published. Its third purpose is to discuss how to extract density 

reflectivity from the long offset seismic data that is often being acquired these days. 

Introduction 

For years, we have been solving AVO equations for intercept and gradient, which, though 

useful, are mathematical functions that are only partially related to the underlying rock 

properties in which we are interested. Attempts to rectify this problem began in the late 1980s 

and continue to this day. 

Currently, most forms of AVO analysis are derived from Aki and Richardsô (1980) approximation 

to Zoeppritzô (1919) equations. Aki and Richards chose to describe the AVO relationship in 

terms of P-wave velocity (a), S-wave velocity (b) and density (r), shown in Table 1 as 

Equation 1. These elastic parameters are related simply to other commonly used elastic 

parameters, therefore, the AVO equations can be expressed in terms of any of the elastic 

parameters expressed in Table 2. The most common AVO equations are re-expressions of the 

Aki and Richards (1980) equation in terms of these other elastic parameters, sometimes with 

other approximations added. Familiar examples are Shueyôs (1985) re-expression of Aki and 

Richards' equation in terms of P-impedance (ra), Poissonôs ratio (s) and P-velocity (a), shown 

in Table 1 as Equation 4 and Smith and Gidlowôs (1987) version in terms of P-velocity (a) and 

S-velocity (b), which uses some additional approximations. The most frequently used version is 

a modification of Shueyôs equation (due to Wiggins et al., 1983) using the A, B, C terminology, 

where A is the intercept, B is the AVO gradient, and C is commonly referred to as the curvature. 

Shueyôs (1985) version of this equation is expressed as: 
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The ABC version of the equation is expressed in two equivalent ways:  

R(q) = A + B sin2q + C (tan2q ï sin2q) = A + B sin2q + C tan2q sin2q 

Where: 

A = R0 

B = ὃὙ  

C =  

Shueyôs and Wigginsô equations are useful because they split the data into simple intercept and 

gradient terms. Expressed this way, it is easy to see the intercept and gradient in the raw 

seismic data. These equations should always be used as a QC for AVO analysis for this reason. 

The relationship between the gradient and other petrophysical parameters begins to show itself 

by the presence of Poissonôs ratio in this equation. Wigginsô equation is difficult to relate to 

petrophysics because the second term, B, is comprised of a complex mix of the reflectivity of 

the P-impedance and what Verm and Hilterman (1994) describe as ñPoissonôs reflectivityò: 

PR = 2)1( s

s

-

D
.  

This means that in order to comprehend the petrophysics behind the AVO response, extensive 

forward modeling must be done. This is common practice in AVO analysis at the moment.  

More recent AVO equations strive to extract the petrophysical parameters of interest directly 

from the variations in the seismic amplitudes with offset. Examples of such equations are: Verm 

and Hilterman (1994) who modify Shueyôs equation to derive P-impedance and the Poissonôs 

reflectivity described above, Smith and Gidlow (1987) for P- and S-velocity reflectivities, Gidlow 
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et al. (1992) for P- and S-impedance reflectivities, and Gray et al. (1999) for the reflectivities of 

the shear modulus and either the bulk modulus or Lam®ôs modulus. The problem with these 

AVO equations is that each author uses their own symbols, so it has been difficult to relate one 

AVO equation to another. Verm and Hilterman use NI and PR, Smith and Gidlow use DV/V and 

DW/W, and Gidlow et al. use DI/I, DJ/J and DK/K.  

As mentioned, one purpose of this paper is to express all these AVO equations using common 

parameters. This allows us to recognize the relationships between them. All the above 

equations are re-expressed in Table 1 using the most common parameterization of these 

variables, as described in Appendix A. This allows the comparison of the equations and assists 

in the determination of which equation is useful in each geological environment.  

Theory 

AVO equations such as Shueyôs and Wigginsô can be re-expressed in terms of common 

petrophysical parameters, which allow for easier comprehension of the results. For example, 

Shueyôs equation can be slightly modified to use the reflectivities of the P-impedance, Poissonôs 

ratio, which is different than the Poissonôs reflectivity ï PR ï defined by Verm and Hilterman 

(1994), and density. This modification (Equations 9a and 9b in Table 1) allows for the extraction 

of the petrophysical reflectivity parameters: P-impedance reflectivity (D[ra]/[ra]), Poissonôs ratio 

reflectivity (Ds/s) and density reflectivity (Dr/r). In order to make modifications to the AVO 

equations to express them in terms of petrophysical parameters, the relationships in Table 2 are 

converted to reflectivities and substituted into Aki and Richardsô equation. An example of such a 

derivation for the bulk modulus, k, the shear modulus, m, and density, r, is shown in Appendix B. 

I have attempted to list all AVO equations that might be of interest to the geophysicist, 

petrophysicist or reservoir engineer in Table 1. All derivations of the AVO equations shown in 

Table 1 are similar to the one shown in Appendix B.  

 

Table 1. AVO equations expressed using consistent parameterization of a = P-wave velocity, b = shear-wave 

velocity, r = density, s = Poissonôs ratio, m = shear modulus, k = bulk modulus, l = Lam®ôs modulus, derived using 

the relationships in Table 2 and the methodology demonstrated in Appendix B. 
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Table 2. Relationships between elastic parameters, after Wang and Nur (1992). 
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Table 3. PS-AVO equations expressed using consistent parameterization of a = P-wave velocity, b = shear-wave 

velocity, r = density, m = shear modulus, derived using the relationships in Table 2 and the methodology 

demonstrated in Appendix B. 
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The equation that I find most interesting is Equation 11, which expresses the shear term as b/a, 

or the Vs/Vp ratio. This parameterization results in some interesting simplifications. Unlike the 

other equations the Vs/Vp ratio in the second term is not a reflectivity, but a change in this ratio. 

This might have some important implications regarding, e.g., scaling.  

The equation that is going to be most useful for exploration is Equation 17, Russell et al.ôs 

(2011). This equation finally accomplished the original idea behind AVO, which was to look for 

fluids in sands, by splitting out a term that is specifically related to fluids, Df/f, and another 

specifically related to the rock Dm/m. This makes it ideal for exploration. 

There are other petrophysical parameters (e.g., Youngôs modulus) that are not typically used in 

petrophysical analyses and so are not covered by the above AVO equations. However, they can 

also be used in an AVO equation. The reflectivities of any three petrophysical parameters 

related to P-wave velocity, S-wave velocity and density can be derived directly by using an 

appropriate AVO equation that can be derived following the example shown in Appendix B. 

Gray (2002) shows that the advantage of this direct AVO inversion for petrophysical parameters 

is that there are no additional statistical errors in the inversion for the attributes of interest, as 

there are when elastic parameters are derived indirectly from AVO results (e.g., Goodway et al, 

1997). 

For PS-AVO, there are only two key parameters, one related to the shear properties and one 

related to density. Therefore, there are only three useful parameterizations of PS-AVO: the 

original by Aki and Richards (1980), one parameterized with the shear modulus (m), and one 

parameterized with what is called shear impedance (rb). All three parameterizations are listed 

in Table 3. 

Approximations and the Advent of Petrophysics in the AVO Equations 

Most practical implementations of the AVO equations involve some sort of additional 

approximation to Aki and Richardsô approximations. Most of these approximations involve only 

two terms, dropping the third term in the AVO equation. This is generally because, in the 

commonly used equations, the third term tends to only become significant at large angles, 

where the approximations used by Aki and Richards no longer hold if the common assumption 

is made that the incident and emergent angles are the same. However, if emergent angles are 

also used, then these equations that include the third term are much more accurate (Downton 

and Ursenbach, 2006). Also, many authors assume that the density contrast between layers, 

which often accounts for the third term, is small based on Gardner et al.ôs (1974) P-wave 

velocity ï density relationship. For the most part, these approximations work because most 

seismic data acquired around the time these equations were published did not have sufficient 

offset to robustly determine the third term of the AVO equation, which generally only becomes 
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significant at angles greater than 30 degrees. Smith (1996) showed that using a three-

parameter equation does not make any significant difference in the results for the data he used, 

which only had incident angles out to 33 degrees. For the newer equations (e.g., Gray et al., 

1999), the third term can be significant, even at zero offset. Some, like Smith and Gidlow (1987) 

and Verm and Hilterman (1994), have tried to apply some petrophysical knowledge of the 

reservoir to better approximate the AVO results. Smith and Gidlow (1987) use Castagna et al.ôs 

(1985) ñmudrock lineò and Gardnerôs density estimate from velocity. Verm and Hilterman use the 

approximation a/b = 2 and assume that the third term in Shueyôs equation is negligible. Since 

longer shot-receiver offsets are being shot more commonly now for the purpose of extracting 

more information from the data (e.g., Wombell et al., 1999), the third term of these AVO 

equations will be more important for such data because its long offset has the potential to allow 

for robust third term estimation, provided that anisotropy is accounted for with tools like VVAZ 

(Velocity Versus Azimuth) and AVAZ (Amplitude Versus Angle and Azimuth) as well as using 

migration algorithms that allow for these. Using petrophysical approximations as suggested by 

Smith and Gidlow (1987) is recommended for data with small maximum angles of incidence, if 

these equations are to be used effectively to estimate the third term (e.g., Kelly et al., 2001).  

Petrophysical relationships such as Gardnerôs velocity-density relationship and Castagna et al.ôs 

mudrock line are increasingly being used to stabilize AVO equations for the purpose of 

obtaining the elusive density reflectivity (see e.g., Kelly et al., 2001). Density reflectivity is 

important because it will help us to distinguish so-called ñfizzwaterò from gas and oil 

accumulations, thereby allowing for a much-reduced risk scenario than is typical for AVO 

results, currently. Density is very important for Canadian oil sands reservoirs. Often density is 

used to distinguish porous, saturated, reservoir sand from shale, e.g., Gray et al., 2006; Mayer 

et al., 2015. 

Gidlow et al. (1992) found a way to re-express Aki and Richardsô AVO equation in terms of P-

impedance, S-impedance and density, without using the approximations used in Smith and 

Gidlow (1987). The density term in this equation mathematically has very little effect until quite 

large incident angles occur. Here, and in general in AVO analysis, large incident angles are 

defined as tan2q >> sin2q and are typically considered to occur at angles greater than 30°. 

Gray et al.ôs (1999) AVO equations were inspired by the work of Goodway et al. (1997) and 

Gray and Andersen (2001), that showed that Lam®ôs modulus and the shear modulus are very 

good at separating fluid and rock effects. Smith and Gidlow (2000) showed if certain 

approximations are made, Lam®ôs modulus reflectivity is very closely mathematically related to 

the Fluid Factor, confirming Goodway et al.ôs and Gray and Andersenôs observations, and 

provides insight into both the Fluid Factor and Lam®ôs modulus. 
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Inversion of petrophysical properties 

Seismic AVO reflections are very useful for interpreting structural and lithological boundaries, 

e.g., Castagna et al. (1998). These interpretations can be improved through the use of inversion 

(e.g., Pendrel and Van Riel, 1997). An example from Gray and Andersen (2001) shows that the 

interpretation of a known rugose unconformity at the top of the Mississippian section in Alberta 

appears more rugose after interpretation of the inversion for Lam®ôs modulus, a petrophysical 

attribute. Lam®ôs modulus shows strong separation between clastic and carbonate rocks 

(Figure 1), which allows for a more confident interpretation of this unconformity, as can be seen 

on the west side of the lr plot in Figure 1 where the original interpretation of the unconformity, 

in red, is clearly above where it would be picked on the lr section.  

When we look at the amplitudes of reflections as we commonly do in exploration and AVO 

analyses, we are generally making an implicit assumption that the nature of the overburden 

does not vary. In general, this assumption is not true and inversion is a means by which we can 

separate the effects on a refection coefficient due to the overburden from the effects due to the 

reservoir. After inversion, we are better able to establish both whether there is adequate 

reservoir present and whether there is a suitable caprock. Investigations of caprock are 

becoming an increasingly more important aspect of interpretation (e.g., Liro et al., 2001). An 

example of such an interpretation for a gas field in China is shown in Figure 2 (Gray and 

Andersen, 2001), where we can see both reservoir and caprock signatures by comparing 

Lam®ôs modulus and the shear modulus through lr and mr. 

Gray (2002) shows that any petrophysical reflectivity, such as the ones derived here, can be 

inverted for its associated petrophysical parameter using off-the-shelf post-stack inversion 

software (e.g., Figure 3). 
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Figure 1. Example of the interpretation of ɚɟ (top) and mr (bottom) for a 3D dataset in the Western Canadian Basin 

(after Gray and Andersen, 2001). This analysis enables low ɚɟ anomalies (blue) combined with moderate mr 

anomalies (pink and blue) to be interpreted as gas sands, with much less ambiguity. 
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Figure 2. Example of the interpretation of ɚɟ (left) and mr (right) for a 3D dataset in China (after Gray and Andersen, 

2001). This analysis enables low ɚɟ anomalies (green) combined with moderate mr anomalies (red and purple) to be 

interpreted as gas sands with much less ambiguity. In addition, shales overlying these reservoirs can be identified 

with low mr and high ɚɟ. Coals are identified with both low mr and lr. 

Figure 3. Example of an inversion for ɚɟ (left) using the Goodway et al. (1997) approach and l (right) using the Gray 

(2002) approach of post-stack inversion of the results of Equation 8, above. Notice the reduced noise in the Gray 

approach. After Gray (2002). 
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Examples 

Certain AVO equations are more appropriate in certain geological settings than others. For 

example, at the sea floor, the use of an AVO equation describing the change in Vp/Vs ratio is 

much more appropriate than using one that incorporates changes in Poissonôs ratio (Figure 4). 

As can be seen in the synthetic in Figure 4, a huge change in Vp/Vs ratio going from near 

infinite to 10 is equivalent to a tiny change in Poissonôs ratio from 0.5 to 0.495. This indicates 

that AVO equations that solve for Vp/Vs ratio reflectivity are more useful in younger, relatively 

unconsolidated sediments like those in the Gulf of Mexico than those that solve for Poissonôs 

ratio reflectivity. The corollary is that equations that solve for Poissonôs ratio reflectivity are more 

useful than those that solve for the Vp/Vs ratio in geologic settings containing older, 

consolidated rocks such as occur in much of continental North America. For example, the lower 

Cretaceous gas sand on the right side of Figure 5 at about 920 ms is much more clearly defined 

by Poisson reflectivity than by the Fluid Factor. This is because the Poissonôs reflectivity is 

about twice as large as Vp/Vs ratio reflectivity, which is related to the Fluid Factor. 

Figure 4. Example of AVO analysis of the water bottom from the synthetic at left. The water bottom is the first 

reflector at 100 ms. The seismic section in the center is the result of AVO analysis for Poissonôs reflectivity. Note the 

weak response of the water bottom. The seismic section on the right is the result of AVO analysis for Fluid Factor. 

Note the strong response of the water bottom. After Gray (2004). 

Equations that solve for parameters that are typically used in rock physics relationships, like the 

bulk and shear moduli, can be useful for careful quantitative evaluation of potential reservoirs 

and for reservoir characterization. Gray (2002) shows that the AVO parameters can be inverted 

for the desired petrophysical values, e.g., Figure 3. These inverted petrophysical values can 

then be used in petrophysical equations, such as Gassmann (1951), to evaluate potential 

reservoirs, just as log values would be used. Thus, petrophysicists can make reasonable 

estimates of potential risks for reservoir, saturation, reserves, etc., with only regional knowledge 

of the geology, by using the inverted AVO traces to estimate petrophysical parameters. These 

can, in principle, be derived using only the seismic data, using the flow shown below. Such 

values are already being used in exploration and development to assist in the determination of 

reservoirs, e.g., Chen et al. (1998) and Gray and Andersen (2001). 
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Figure 5. Poisson Reflectivity (top) and Fluid Factor (bottom). Note how Poissonôs reflectivity defines the lower gas 

sand better than Fluid Factor. (After Gray, 2004.) 

 

 

 

Figure 6. Flowchart showing how to derive 

petrophysical parameters exclusively from 

seismic data. 

 

 

 

 


