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Purpose

The main purpose of this article is to provide geoscientists with one source which uncovers the
connection between pre-stack seismic gathers and the petrophysical properties that cause
amplitude versus offset (AVO) variations in them. There are many seismic AVO equations in the
literature, all parameterized differently, e.g., Shuey (1985), Smith and Gidlow (1987), Verm and
Hilterman (1994), and Gray et al (1999). This paper attempts to reconcile these
parameterizations by presenting all of these existing equations using common parameters
which are defined in Appendix A. Table 1 lists all the equations using the most commonly used
parameters for each of the elastic constants. A second purpose is to fill in the gaps where
interesting petrophysical parameters point to the possibility of equally interesting AVO equations
that have not yet been published. Its third purpose is to discuss how to extract density
reflectivity from the long offset seismic data that is often being acquired these days.

Introduction

For years, we have been solving AVO equations for intercept and gradient, which, though
useful, are mathematical functions that are only partially related to the underlying rock
properties in which we are interested. Attempts to rectify this problem began in the late 1980s
and continue to this day.

Currently, most forms of AVO analysis are derived from Aki and Richards6(1980) approximation

to Zoeppritz6(1919) equations. Aki and Richards chose to describe the AVO relationship in

terms of P-wave velocity (a), S-wave velocity (b) and density (r), shown in Table 1 as

Equation 1. These elastic parameters are related simply to other commonly used elastic

parameters, therefore, the AVO equations can be expressed in terms of any of the elastic

parameters expressed in Table 2. The most common AVO equations are re-expressions of the

Aki and Richards (1980) equation in terms of these other elastic parameters, sometimes with

other approximations added. Familiar examples ar e Sh u e yéxmesqoh & Bkband r e
Richards' equation in terms of P-impedance (ra) , Poi s s e)mard$-valoaity (a)pshawn

in Table 1 as Equaton4and Smith and Gidl owbs ¢diiy@)andrer si on
S-velocity (b), which uses some additional approximations. The most frequently used version is

a modification of Shigginyed a., 188§)wsing thoA B, C teimmologyy W

where A is the intercept, B is the AVO gradient, and C is commonly referred to as the curvature.
Shueybdés (1985) wversion of this equation is expres
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The ABC version of the equation is expressed in two equivalent ways:

R(g) = A + B sin?q + C (tan?q 1 sin?g) = A + B sin?q + C tan?q sin?q

Where:
A=Ro
B=0Y ——
C=-——

S h u e 3and Wigginsdequations are useful because they split the data into simple intercept and
gradient terms. Expressed this way, it is easy to see the intercept and gradient in the raw
seismic data. These equations should always be used as a QC for AVO analysis for this reason.

The relationship between the gradient and other petrophysical parameters begins to show itself

by the presence of Poi sWigginsdeguatiomis diffcultiomelatetoi s equat i
petrophysics because the second term, B, is comprised of a complex mix of the reflectivity of

the P-impedance and what Verm and Hilterman (1994) describeasii Poi ssoné6s: refl ect i)

Ds

PRZW.

This means that in order to comprehend the petrophysics behind the AVO response, extensive
forward modeling must be done. This is common practice in AVO analysis at the moment.

More recent AVO equations strive to extract the petrophysical parameters of interest directly

from the variations in the seismic amplitudes with offset. Examples of such equations are: Verm

and Hilterman (1994) who mod-imfpyed@mecey @ de d hat iPon s
reflectivity described above, Smith and Gidlow (1987) for P- and S-velocity reflectivities, Gidlow
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et al. (1992) for P- and S-impedance reflectivities, and Gray et al. (1999) for the reflectivities of

the shear modulus and either t.hheprobleh withthesel ul us or

AVO equations is that each author uses their own symbols, so it has been difficult to relate one
AVO equation to another. Verm and Hilterman use NI and PR, Smith and Gidlow use DV/V and
DW/W, and Gidlow et al. use Di/l, DJ/J and DK/K.

As mentioned, one purpose of this paper is to express all these AVO equations using common
parameters. This allows us to recognize the relationships between them. All the above
equations are re-expressed in Table 1 using the most common parameterization of these
variables, as described in Appendix A. This allows the comparison of the equations and assists
in the determination of which equation is useful in each geological environment.

Theory

AVO equati ons sandcWiggiasécandh ne-expréssed in terms of common
petrophysical parameters, which allow for easier comprehension of the results. For example,

Shueybs equation can be sl ight !l y -imrmopdeidfa necde ,t oP ouisses o
ratio,whichi s di fferent than {1 RRI définpedBys/verm énd Hilteenanl ect i vi t vy

(1994), and density. This modification (Equations 9a and 9b in Table 1) allows for the extraction

of the petrophysical reflectivity parameters: P-impedance reflectivity (Ofra]/[ra]),Poi ssonds r at

reflectivity (Ds/s) and density reflectivity (Dr/r). In order to make modifications to the AVO
equations to express them in terms of petrophysical parameters, the relationships in Table 2 are
converted to reflectivities and substituted into Aki and Richardsbequation. An example of such a

derivation for the bulk modulus, k, the shear modulus, m and density, r, is shown in Appendix B.

I have attempted to list all AVO equations that might be of interest to the geophysicist,
petrophysicist or reservoir engineer in Table 1. All derivations of the AVO equations shown in
Table 1 are similar to the one shown in Appendix B.

Table 1. AVO equations expressed using consistent parameterization of a = P-wave velocity, b = shear-wave

velocity, r =density, s = Poi s s o mdshearmoduium k = bulk modulus,l = Lam®&s modul us,

the relationships in Table 2 and the methodology demonstrated in Appendix B.

Para-
meters

AVO Equations Reference

a,b,r 1 Da  b?(., \Db 14 b> ., &Dr _ Akiand 1
R(g)° E(se(f q);- 4?(S|n q)?+§?- 4a—25|n qu Richards (1980)
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Table 2. Relationships between elastic parameters, after Wang and Nur (1992).

Known ~ Bulk
Para- Youndo oquus P-wave
meters  medulus (E) (K) modulus (P) modulus (/)
3K(3K +E)| 3K@BK-E) | 3KE | 1 E
= oK - E 9K-E | 9K-E | 2 6K
. 3m mam-E) | ME-2m E |
7 33m-E)| 3mE 3m E B
= E (1- vIE VvE E
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Table 3. PS-AVO equations expressed using consistent parameterization of a = P-wave velocity, b = shear-wave
velocity, r = density, m= shear modulus, derived using the relationships in Table 2 and the methodology
demonstrated in Appendix B.

Eqd

Para- Reference

meters

PS AVO Equations

Aki and

b,r sing, € 8p? b oD €& Ap> ., b aipre 18
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The equation that | find most interesting is Equation 11, which expresses the shear term as b/a,
or the Vs/Vp ratio. This parameterization results in some interesting simplifications. Unlike the
other equations the Vs/Vp ratio in the second term is not a reflectivity, but a change in this ratio.
This might have some important implications regarding, e.g., scaling.

The equation that is going to be most useful for exploration is Equation 17, Russel | et al . 0s
(2011). This equation finally accomplished the original idea behind AVO, which was to look for

fluids in sands, by splitting out a term that is specifically related to fluids, Df/f, and another

specifically related to the rock Dmim This makes it ideal for exploration.

There are other petrophysical parameters (e.g,Youngés modul us) that are no
petrophysical analyses and so are not covered by the above AVO equations. However, they can

also be used in an AVO equation. The reflectivities of any three petrophysical parameters

related to P-wave velocity, S-wave velocity and density can be derived directly by using an

appropriate AVO equation that can be derived following the example shown in Appendix B.

Gray (2002) shows that the advantage of this direct AVO inversion for petrophysical parameters

is that there are no additional statistical errors in the inversion for the attributes of interest, as

there are when elastic parameters are derived indirectly from AVO results (e.g., Goodway et al,

1997).

For PS-AVO, there are only two key parameters, one related to the shear properties and one
related to density. Therefore, there are only three useful parameterizations of PS-AVO: the
original by Aki and Richards (1980), one parameterized with the shear modulus (), and one
parameterized with what is called shear impedance (r b). All three parameterizations are listed
in Table 3.

Approximations and the Advent of Petrophysics in the AVO Equations

Most practical implementations of the AVO equations involve some sort of additional
approximation to Aki and Richardséapproximations. Most of these approximations involve only
two terms, dropping the third term in the AVO equation. This is generally because, in the
commonly used equations, the third term tends to only become significant at large angles,
where the approximations used by Aki and Richards no longer hold if the common assumption
is made that the incident and emergent angles are the same. However, if emergent angles are
also used, then these equations that include the third term are much more accurate (Downton
and Ursenbach, 2006). Also, many authors assume that the density contrast between layers,
which often accounts for the third term, is small based on Gardner et al.& (1974) P-wave
velocity T density relationship. For the most part, these approximations work because most
seismic data acquired around the time these equations were published did not have sufficient
offset to robustly determine the third term of the AVO equation, which generally only becomes
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significant at angles greater than 30 degrees. Smith (1996) showed that using a three-
parameter equation does not make any significant difference in the results for the data he used,
which only had incident angles out to 33 degrees. For the newer equations (e.g., Gray et al.,
1999), the third term can be significant, even at zero offset. Some, like Smith and Gidlow (1987)
and Verm and Hilterman (1994), have tried to apply some petrophysical knowledge of the
reservoir to better approximate the AVO results. Smith and Gidlow (1987) use Castagna et al.0 s
(19 8ntudirockil i ned and Ga restimagerfrdnsvelatity nverin ang Hilterman use the
approximationa/b=2and assume t hat t heequationis megligiderSimcei n Shuey
longer shot-receiver offsets are being shot more commonly now for the purpose of extracting
more information from the data (e.g., Wombell et al., 1999), the third term of these AVO
equations will be more important for such data because its long offset has the potential to allow
for robust third term estimation, provided that anisotropy is accounted for with tools like VVAZ
(Velocity Versus Azimuth) and AVAZ (Amplitude Versus Angle and Azimuth) as well as using
migration algorithms that allow for these. Using petrophysical approximations as suggested by
Smith and Gidlow (1987) is recommended for data with small maximum angles of incidence, if
these equations are to be used effectively to estimate the third term (e.g., Kelly et al., 2001).

Petrophysical rel at i ons hidgnsty relatianghip ansl CaStagnadenadd K s v e |
mudrock line are increasingly being used to stabilize AVO equations for the purpose of

obtaining the elusive density reflectivity (see e.g., Kelly et al., 2001). Density reflectivity is

important because it will help us to distinguishso-c al | ed Afi zzwaterd from gas
accumulations, thereby allowing for a much-reduced risk scenario than is typical for AVO

results, currently. Density is very important for Canadian oil sands reservoirs. Often density is

used to distinguish porous, saturated, reservoir sand from shale, e.g., Gray et al., 2006; Mayer

et al., 2015.

Gidlow et al. (1992) found awaytore-e x pr ess Aki and Richardsdé AVO eq
impedance, S-impedance and density, without using the approximations used in Smith and

Gidlow (1987). The density term in this equation mathematically has very little effect until quite

large incident angles occur. Here, and in general in AVO analysis, large incident angles are

defined as tan?q >> sin?q and are typically considered to occur at angles greater than 30°.

Grayetalds (1999) AVO equ aytheovork of Goodway ei ah (4997) and d

Gray and Andersen (2001) , t hat showed that Lam®0bs modul us and
good at separating fluid and rock effects. Smith and Gidlow (2000) showed if certain
approximations ar e mdleattviy iskeayrol@élsmathamdticdllyraslated to

the Fluid Factor, confirming Goodway etal,6 s a n d @ndargenéasbstrvations, and

providesi nsi ght into both the Fluid Factor and Lam®6s
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Inversion of petrophysical properties

Seismic AVO reflections are very useful for interpreting structural and lithological boundaries,

e.g., Castagna et al. (1998). These interpretations can be improved through the use of inversion

(e.g., Pendrel and Van Riel, 1997). An example from Gray and Andersen (2001) shows that the
interpretation of a known rugose unconformity at the top of the Mississippian section in Alberta
appears more rugose after interpr etapetrophysicabf t he
attribute. La m®6 s mo d u |l ang sepatatombetween alastic and carbonate rocks

(Figure 1), which allows for a more confident interpretation of this unconformity, as can be seen

on the west side of the | r plot in Figure 1 where the original interpretation of the unconformity,

in red, is clearly above where it would be picked on the | r section.

When we look at the amplitudes of reflections as we commonly do in exploration and AVO
analyses, we are generally making an implicit assumption that the nature of the overburden

does not vary. In general, this assumption is not true and inversion is a means by which we can
separate the effects on a refection coefficient due to the overburden from the effects due to the
reservoir. After inversion, we are better able to establish both whether there is adequate

reservoir present and whether there is a suitable caprock. Investigations of caprock are

becoming an increasingly more important aspect of interpretation (e.g., Liro et al., 2001). An
example of such an interpretation for a gas field in China is shown in Figure 2 (Gray and
Andersen, 2001), where we can see both reservoir and caprock signatures by comparing
Lam®b6s modul us and thelradderar modul us through

Gray (2002) shows that any petrophysical reflectivity, such as the ones derived here, can be
inverted for its associated petrophysical parameter using off-the-shelf post-stack inversion
software (e.g., Figure 3).
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Figurel.Exampl e of the i nt er pnrbettora)tfor 203D dadaket irthe WedsteonpCanadian Basin
(after Gray and Andersen, 2001). This analysis enables | ow anp anomalies (
anomalies (pink and blue) to be interpreted as gas sands, with much less ambiguity.
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Figure2.Ex ampl e of t he i left)andqm(right)fota 3D datagefin Ghipa (dfter Gray and Andersen,
2001). This analysi s amenbconbised withwoderate na anomahek (red and furple) to be
interpreted as gas sands with much less ambiguity. In addition, shales overlying these reservoirs can be identified
with low nr and high & } Coals are identified with both low nt and I r.
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Figure 3. Example of an inversion for a-}  ( usiegfthie I5oodway et al. (1997) approach and | (right) using the Gray
(2002) approach of post-stack inversion of the results of Equation 8, above. Notice the reduced noise in the Gray
approach. After Gray (2002).
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Examples

Certain AVO equations are more appropriate in certain geological settings than others. For

example, at the sea floor, the use of an AVO equation describing the change in Vp/Vs ratio is

much more appropriate than using one that4.incorpo

As can be seen in the synthetic in Figure 4, a huge change in Vp/Vs ratio going from near

infintet o 10 i s equivalent t o afronh0.5tg0.485hThisigdeatdssn Poi s s o
that AVO equations that solve for Vp/Vs ratio reflectivity are more useful in younger, relatively

unconsolidated sediments like those in the Gulf of Mexico thanthose t hat sol ve for Poi
ratio reflectivity. The corol l ary is that equations that solve
useful than those that solve for the Vp/Vs ratio in geologic settings containing older,

consolidated rocks such as occur in much of continental North America. For example, the lower

Cretaceous gas sand on the right side of Figure 5 at about 920 ms is much more clearly defined

by Poisson reflectivity than by the Fluid Factor. Thi s i s because the Poissonb6
about twice as large as Vp/Vs ratio reflectivity, which is related to the Fluid Factor.

| [ -
o i l j I

L famam ¢ | o= { L I I Soos S 53 S S -
{ ! i | il B > < <

ot tas & 5 4 I e RIS SIS S oS
{ R " |

Figure 4. Example of AVO analysis of the water bottom from the synthetic at left. The water bottom is the first

reflector at 100 ms. The seismic section in the centeristhere sul t of AVO analysis for Poissonf¢
weak response of the water bottom. The seismic section on the right is the result of AVO analysis for Fluid Factor.

Note the strong response of the water bottom. After Gray (2004).

Equations that solve for parameters that are typically used in rock physics relationships, like the
bulk and shear moduli, can be useful for careful quantitative evaluation of potential reservoirs
and for reservoir characterization. Gray (2002) shows that the AVO parameters can be inverted
for the desired petrophysical values, e.g., Figure 3. These inverted petrophysical values can
then be used in petrophysical equations, such as Gassmann (1951), to evaluate potential
reservoirs, just as log values would be used. Thus, petrophysicists can make reasonable
estimates of potential risks for reservoir, saturation, reserves, etc., with only regional knowledge
of the geology, by using the inverted AVO traces to estimate petrophysical parameters. These
can, in principle, be derived using only the seismic data, using the flow shown below. Such
values are already being used in exploration and development to assist in the determination of
reservoirs, e.g., Chen et al. (1998) and Gray and Andersen (2001).

12 CSEG RECORDER MAY 2023



Ragisnal Shala 40 m Uppar Channal @ m Lowar Chacnal

an 201 " 1E1 ”m 181 151 141 R0 121 m 101 a1 a1 7 a1 51 Rl STATION

(seconds) .
- |
-_—
R Hoeizon 2. —
. —— - L
08 [ ]
‘ —_— o~ w3 j
o — — : | Catoncte U/C S
cop =
Prissors Rakemay

Figure 5. Poisson Reflectivity (top) and Fluid Factor (bottom). Note how P 0 i s sreflactivity defines the lower gas
sand better than Fluid Factor. (After Gray, 2004.)

Figure 6. Flowchart showing how to derive
petrophysical parameters exclusively from
seismic data.
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